4.7 Article

Micro-mechanical properties of new alternative binders for cemented carbides: CoCrFeNiWx high-entropy alloys

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 820, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.153141

关键词

First principles calculations; Micromechanical properties; Elastic anisotropy; High entropy alloys

资金

  1. Swedish Research Council
  2. Swedish Steel Producers' Association
  3. Swedish Foundation for Strategic Research
  4. Swedish Foundation for International Cooperation in Research and Higher Education
  5. Hungarian Scientific Research Fund [OTKA 109570]

向作者/读者索取更多资源

High-entropy alloys are a new type of materials with excellent properties that offer a great variety of possibilities due to the large degree of freedom in element composition. In particular, CoCrFeNiW alloys have recently attracted a lot of attention due to their potential use in solving the long-standing problem of substituting cobalt in the cemented carbide industry. The lack of experimental and theoretical studies on these multi-components alloys hinders their optimal development. In this work, we aim at filling in this gap by studying their mechanical properties employing first-principles alloy theory and experimental techniques. By using the calculated elastic parameters, we analyzed the mechanical stability, elastic anisotropy, Debye temperature, and derived polycrystalline moduli. Moreover, we fabricated CoCrFeNi and (CoCrFeNi)(0.)W-96(0.04) and analyzed them by means of X-ray diffraction and electron backscatter diffraction. The hardness and the Young's modulus were measured. The Young's moduli and the lattice parameters were compared to first principles calculations and good agreement was obtained. Hardness increases with the increment of W composition. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据