4.7 Article

Fuzhuan Brick Tea Attenuates High-Fat Diet-Induced Obesity and Associated Metabolic Disorders by Shaping Gut Microbiota

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 67, 期 49, 页码 13589-13604

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jafc.9b05833

关键词

antibiotics; Fuzhuan brick tea; gut microbiota; metabolic disorders; obesity

资金

  1. National Major R & D Project in China [2017YFD0400803]
  2. China Tea Research System Project [CARS19-09B]

向作者/读者索取更多资源

An increasing amount of evidence suggests that the metabolic improvement of high-fat diet (HFD)-induced obese mice by Fuzhuan brick tea (FBT) is associated with gut microbiota. However, the causalities between FBT and gut microbiota have not yet been elucidated and the underlying mechanisms of action remain unclear. To impart direct evidence for the essential role of gut microbiota in the attenuation of obesity by FBT, the effects of FBT on healthy mice and microbiota-depleted mice that were treated with antibiotics were compared in an HFD-induced obesity mouse model. The results showed that FBT dramatically ameliorated obesity, serum lipid parameters, blood glucose homeostasis, hepatic steatosis, adipocyte hypertrophy, and tissue inflammation. However, the microbiota-depleted mice with single bacterium (Escherichia-Shigella) after antibiotic treatment were resistant to FBT-induced antiobesity and metabolic improvement. The beneficial effects of FBT resulted from its shift on gut microbiota composition and structure in mice. HFD-induced increase in the phyla Firmicutes/Bacteroidetes (F/B) ratio was remarkably restored by FBT. Furthermore, FBT-induced increase in abundances of beneficial bacteria Clostridiaceae, Bacteroidales, and Lachnospiraceae and decreases in harmful Ruminococcaceae, Peptococcaceae, Peptostreptococcaceae, and Erysipelotrichaceae were causal antecedents for FBT to reduce obesity and improve metabolic disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据