4.7 Article

Soil Aggregate Stratification of Ureolytic Microbiota Affects Urease Activity in an Inceptisol

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 67, 期 42, 页码 11584-11590

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jafc.9b04244

关键词

Inceptisol; fertilization; soil aggregates; urease; ureolytic microbiota

资金

  1. National Basic Research Program of China [2015CB150504]
  2. National Natural Science Foundation of China [41830756]

向作者/读者索取更多资源

Ureolytic microbes play a pivotal role in the maintenance of soil fertility. Soil aggregates are supposed to provide heterogeneous habitats for microorganisms, which may result in distinct metabolic functions. However, limited information is available regarding the distribution patterns, driving factors, and activity of ureolytic microbiota at the aggregate scale. In this study, we characterized the ureolytic microbiota and urease activity of three soil aggregate fractions from an Inceptisol subjected to 5 years of different fertilization regimes. Correlations between soil chemical characteristics and ureolytic microbial communities were analyzed. The results showed that the total abundance as well as the relative abundance of copiotrophic ureolytic microbes generally increased with the increasing soil aggregate size. This trend was in line with the nutrient distribution patterns, including labile carbon, NH4+, total carbon, nitrogen, and phosphorus. Soil urease activity also increased significantly with the increasing soil aggregate size and was positively correlated with copiotrophic ureolyric microbes, such as Betaproteobacteria, Alphaproteobacteria, and Gammaproteobacteria. Thus, we speculated that larger size soil aggregates with greater availability of labile carbon support more copiotrophic ureolyric microbes with a high growth rate, leading to a high density of total ureolytic microbes and higher urease activity. Smaller aggregates with less available carbon were associated with more oligotrophs, higher abundances of total ureolytic microbes, and higher urease activity. Our results suggest that larger soil aggregates and associated ureolyric microbes play a more important role in nutrient cycling for crop growth in this Inceptisol ecosystem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据