4.3 Article

Multiscale plasma and feature profile simulations of plasma-enhanced chemical vapor deposition and atomic layer deposition processes for titanium thin film fabrication

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.7567/1347-4065/ab5bc9

关键词

-

向作者/读者索取更多资源

Mechanisms of titanium (Ti) thin films deposited in plasma-enhanced (PE) chemical vapor deposition (CVD) and atomic layer deposition (ALD) processes have been elucidated via multiscale plasma and feature profile simulations. Firstly, by iterating a 2D reactor-scale plasma simulation and a feature-scale deposition profile simulation, a shared surface reaction model has been determined for PECVD processes. Ti film thicknesses and profiles consistently computed both along a wafer surface and inside a test structure agreed very well with the experimental data. Then, another multiscale simulation, with the same plasma model and the surface reaction model to which the Eley-Rideal surface kinetics is added, has been applied to a PEALD process. The simulation succeeded again in reproducing and explaining the non-conformal Ti film deposition observed in experiments, while conformal Ti films are obtained in PECVD processes. Through the simulation work, comprehensive mechanisms of Ti film deposition, which cover both PECVD and PEALD processes, have been discussed and proposed in this study. (C) 2020 The Japan Society of Applied Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据