4.7 Article

On the study of keyhole-mode melting in selective laser melting process

期刊

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ijthermalsci.2019.105992

关键词

Additive manufacturing; Selective laser melting; Keyhole; Fresnel reflection; Porosity

资金

  1. National Research Foundation, Prime Minister's Office, Singapore

向作者/读者索取更多资源

A physics-based computational fluid dynamics (CFD) model was developed to simulate selective laser melting (SLM) process. The heat source model imitates the multiple reflections of the laser beam by using the Fresnel absorption function. The model is able to simulate the fluid flow and heat transfer of keyhole-mode laser melting process, which is validated by single track experiments. In addition, the simulation results show that the melt pool dynamics of the well-deep keyhole is unsteady as compared to the medium-deep keyhole. Different modes of fluid flow, such as downward flow, bottom backward flow, clockwise flow and top forward flow are noticed in the well-deep keyhole melt pool. On the other hand, the melt pool dynamics of the medium-deep keyhole is more stable with two main flows of downward flow and backward flow. Furthermore, the model brings the benefit of predicting the keyhole-induced porosity within the solidified track.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据