4.7 Article

Two Novel er1 Alleles Conferring Powdery Mildew (Erysiphe pisi) Resistance Identified in a Worldwide Collection of Pea (Pisum sativum L.) Germplasms

期刊

出版社

MDPI
DOI: 10.3390/ijms20205071

关键词

Erysiphe pisi; er1-8; er1-9; KASPar marker; pea

资金

  1. Modern Agro-industry Technology Research System [CARS-09]
  2. Crop Germplasm Conservation and Utilization Program from the Ministry of Agriculture of China [2019NWB030-12]
  3. National Infrastructure for Crop Germplasm Resources [NICGR2019-008]
  4. Scientific Innovation Program of the Chinese Academy of Agricultural Sciences from the Institute of Crop Sciences, Chinese Academy of Agricultural Sciences

向作者/读者索取更多资源

Powdery mildew caused by Erysiphe pisi DC. severely affects pea crops worldwide. The use of resistant cultivars containing the er1 gene is the most effective way to control this disease. The objectives of this study were to reveal er1 alleles contained in 55 E. pisi-resistant pea germplasms and to develop the functional markers of novel alleles. Sequences of 10 homologous PsMLO1 cDNA clones from each germplasm accession were used to determine their er1 alleles. The frame shift mutations and various alternative splicing patterns were observed during transcription of the er1 gene. Two novel er1 alleles, er1-8 and er1-9, were discovered in the germplasm accessions G0004839 and G0004400, respectively, and four known er1 alleles were identified in 53 other accessions. One mutation in G0004839 was characterized by a 3-bp (GTG) deletion of the wild-type PsMLO1 cDNA, resulting in a missing valine at position 447 of the PsMLO1 protein sequence. Another mutation in G0004400 was caused by a 1-bp (T) deletion of the wild-type PsMLO1 cDNA sequence, resulting in a serine to leucine change of the PsMLO1 protein sequence. The er1-8 and er1-9 alleles were verified using resistance inheritance analysis and genetic mapping with respectively derived F-2 and F-2:3 populations. Finally, co-dominant functional markers specific to er1-8 and er1-9 were developed and validated in populations and pea germplasms. These results improve our understanding of E. pisi resistance in pea germplasms worldwide and provide powerful tools for marker-assisted selection in pea breeding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据