4.5 Article

Optimizing deep belief network parameters using grasshopper algorithm for liver disease classification

出版社

WILEY
DOI: 10.1002/ima.22375

关键词

deep belief network (DBN); grasshopper optimization algorithm (GOA); liver disease classification; principal component analysis (PCA)

向作者/读者索取更多资源

Image processing plays a vital role in many areas such as healthcare, military, scientific and business due to its wide variety of advantages and applications. Detection of computed tomography (CT) liver disease is one of the difficult tasks in the medical field. Hand crafted features and classifications are the two types of methods used in the previous approaches, to classify liver disease. But these classification results are not optimal. In this article, we propose a novel method utilizing deep belief network (DBN) with grasshopper optimization algorithm (GOA) for liver disease classification. Initially, the image quality is enhanced by preprocessing techniques and then features like texture, color and shape are extracted. The extracted features are reduced by utilizing the dimensionality reduction method like principal component analysis (PCA). Here, the DBN parameters are optimized using GOA for recognizing liver disease. The experiments are performed on the real time and open source CT image datasets which embraces normal, cyst, hepatoma, and cavernous hemangiomas, fatty liver, metastasis, cirrhosis, and tumor samples. The proposed method yields 98% accuracy, 95.82% sensitivity, 97.52% specificity, 98.53% precision, and 96.8% F-1 score in simulation process when compared with other existing techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据