4.7 Article

Impact of different weather years on the design of hydrogen supply pathways for transport needs

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 44, 期 47, 页码 25442-25456

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2019.08.032

关键词

Variable renewable energy; Wind energy; Weather years; Optimization; Power-to-hydrogen

资金

  1. Helmholtz Association under the Joint Initiative, EnergySystem 2050 - A Contribution of the Helmholtz Research Field Energy

向作者/读者索取更多资源

Renewable energy sources (RES) will play a crucial role in future sustainable energy systems. In scenarios analyzing future energy system designs, a detailed spatial and temporal representation of renewable-based electricity generation is essential. For this, sufficiently representative weather data are required. Most analyses performed in this context use the historical data of either one specific reference year or an aggregation of multiple years. In contrast, this study analyzes the impact of different weather years based on historical weather data from 1980 through 2016 in accordance with the design of an exemplary future energy system. This exemplary energy system consists of on- and offshore wind energy for power-to-hydrogen via electrolysis, including hydrogen pipeline transport for most southwestern European countries. The assumed hydrogen demand for transportation needs represents a hypothetical future market penetration for fuel cell-electric vehicles of 75%. An optimization framework is used in order to evaluate the resulting system design with the objective function of minimizing the total annual cost (TAC) of the system. For each historical weather year, the applied optimization model determines the required capacities and operation of wind power plants, electrolyzers, storage technologies and hydrogen pipelines to meet the assumed future hydrogen demand in a highly spatially-and temporally-detailed manner, as well as the TAC of the system. Following that, the results of every individual year are compared in terms of installed capacities, overall electricity generation and connection to the transmission network, as well as the cost of these components within each region. The results reveal how sensitive the final design of the exemplary system is to the choice of the weather year. For example, the TAC of the system changes by up to 20% across two consecutive weather years. Furthermore, significant variation in the optimization results regarding installed capacities per region with respect to the choice of weather years can be observed. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据