4.7 Article

Pre-cracking development of weld-induced squats due to plastic deformation: Five-year field monitoring and numerical analysis

期刊

INTERNATIONAL JOURNAL OF FATIGUE
卷 127, 期 -, 页码 431-444

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijfatigue.2019.06.013

关键词

Welds-induced rail squats; Field observation; Finite element simulation; Varying hardness distribution; Differential plastic deformation; Dynamic contact force

向作者/读者索取更多资源

Weld-induced squats are a major damage type in high-speed railways as well as in conventional railways. They incur high maintenance costs and endanger operational safety. This paper first presents and analyzes five-year continual field monitoring observations and measurements of squats at rail welds. A hypothesis of the formation and development process of the squats is proposed, which includes three steps. Steps 1 and 2 are pre-cracking, and Step 3 is post-cracking. To verify the pre-cracking process, a three-dimensional (3D) finite element (FE) model is then built up to simulate the vehicle-track interaction with detailed consideration of the local wheel-rail frictional rolling contact. Not only dynamic contact forces but also plastic deformation and wear are calculated. Starting from a smooth rail surface with varying yield stress derived from field-measured hardness, the numerical analysis confirms the hypothesis that the varying hardness at heat-affected zones (HAZs) leads to initial V-shaped irregularities due to differential plastic deformation. Afterward, the surface irregularities excite the dynamic longitudinal contact force, which in turn produces a W-shaped surface pattern through further differential plastic deformation. The growth of the W-shaped pattern leads to the formation of squats. This work provides insight into the squat formation process at rail welds and suggests that welding quality control in terms of hardness variation in the HAZs could reduce or even avoid squats. Early detection of squats with dynamics-based methods is possible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据