4.7 Article

Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities

期刊

INTERNATIONAL JOURNAL OF COMPUTER VISION
卷 128, 期 5, 页码 1118-1140

出版社

SPRINGER
DOI: 10.1007/s11263-019-01265-2

关键词

-

向作者/读者索取更多资源

In this paper, we present the Lipschitz regularization theory and algorithms for a novel Loss-Sensitive Generative Adversarial Network (LS-GAN). Specifically, it trains a loss function to distinguish between real and fake samples by designated margins, while learning a generator alternately to produce realistic samples by minimizing their losses. The LS-GAN further regularizes its loss function with a Lipschitz regularity condition on the density of real data, yielding a regularized model that can better generalize to produce new data from a reasonable number of training examples than the classic GAN. We will further present a Generalized LS-GAN (GLS-GAN) and show it contains a large family of regularized GAN models, including both LS-GAN and Wasserstein GAN, as its special cases. Compared with the other GAN models, we will conduct experiments to show both LS-GAN and GLS-GAN exhibit competitive ability in generating new images in terms of the Minimum Reconstruction Error (MRE) assessed on a separate test set. We further extend the LS-GAN to a conditional form for supervised and semi-supervised learning problems, and demonstrate its outstanding performance on image classification tasks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据