4.7 Article

Tailor-made ternary nanopolyplexes of thiolated trimethylated chitosan with pDNA and folate conjugated cis-aconitic amide-polyethylenimine for efficient gene delivery

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2019.10.212

关键词

Chitosan; Polyplexes; Gene delivery

资金

  1. National Natural Science Foundation of China [81773647, 81771949]
  2. Medicine-Engineering Joint Foundation of Shanghai Jiao Tong University [YG2014ZD01, YG2016MS28, YG2016MS17]
  3. Science and Technology Development Fund of Shanghai Pudong New Area [PKJ2017-Y04]
  4. Science and Technology Commission of Shanghai Municipality [17441901700]
  5. project of Translational Medicine of Shanghai Jiao Tong University [ZH2018ZDA03]

向作者/读者索取更多资源

To overcome the different extra-/intracellular barriers in gene delivery, tumor-targeted and pH/redox-responsive ternary polyplexes with charge-conversional properties were prepared through a modular self-assembly strategy. Firstly, the thiolated trimethylated chitosan (TMC-SH) was synthesized to crosslink and condense pDNA through electrostatic interaction and disulfide formation, which obtained the TMC-SS/pDNA binary polyplexes with redox-responsive gene release. To further endow the binary polyplexes with tumor targeting and endo/lysosomal pH-triggered charge-reversal properties, a folate conjugated cis-aconitic amide-polyethylenimine (FA-PEI-AcO) was synthesized to shield the positive TMC-SS/pDNA, generating the FA-PEI-AcO/TMC-SS/pDNA ternary polyplexes with a size of similar to 190 nm and negative surface-charges. The.-potential of the polyplexes was stable at physiological pH and increased rapidly from -14 mV to + 20 mV at pH 5.5 (endo/lysosomal pH) due to the breakages of acid-liable amide bonds and the subsequent de-shielding of FA-PEI-AcO layers, which might benefit the endo/lysosomal escape of the polyplexes. Afterward, the polyplexes could redox-responsively release gene at higher intracellular concentrations of glutathione. By taking advantage of such multi-responses, significantly enhanced transfection efficiency was achieved in vitro in Hela cells for the ternary polyplexes. These results suggested that the newly developed polyplexes had potential application for gene delivery. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据