4.7 Article

Experimental study on the pressure drop oscillation characteristics of the flow boiling instability with FC-72 in parallel rectangle microchannels

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2019.104289

关键词

Experiment; Microchannels; Flow boiling instability; Flow patterns; Pressure drop oscillation; Mechanisms

资金

  1. Science and Technology Project of Beijing Education Committee [KZ201810005006]
  2. National Natural Science Foundation of China [51576005]

向作者/读者索取更多资源

Experiments of the pressure drop instability of flow boiling with FC-72 in 8 parallel rectangle microchannels with a hydraulic diameter of 88 pm were conducted in this study. The mass flux ranges from 578.2 to 2310.9 kg/m(2) s, the heat flux ranges from 0 to 1200 kW/m(2) and the measured pressure drop ranges from 13 to 275 kPa. The compressive volume in a nitrogen vessel before the test microchannels is set as 0, 5 and 15 ml in the experiments. The experimental results of heat transfer, pressure drop and the corresponding flow patterns are presented and analyzed. Furthermore, the critical vapour qualities at the onset of the flow boiling instability (OFBI) are predicted by a theoretical model considering the local pressure and the frictional pressure resistances. The calculated and experimental results indicate that the instable zones in a flow boiling stability map expand with increasing the compressive volume and decreasing the two types of resistances. The critical vapour quality at OFBI changes from 0.65 to 1 when the local pressure resistance combination coefficient is increased to 7.33 x 10(-3) or the frictional pressure resistance combination coefficient is increased to 0.532. The physical mechanisms behind the phenomena are discussed according to the experimental results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据