4.6 Article

Infrared and visible image fusion with ResNet and zero-phase component analysis

期刊

INFRARED PHYSICS & TECHNOLOGY
卷 102, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.infrared.2019.103039

关键词

Image fusion; Deep learning; Residual network; Zero-phase component analysis; Infrared image; Visible image

向作者/读者索取更多资源

In image fusion approaches, feature extraction and processing are key tasks, and the fusion performance is directly affected by the different features and processing methods undertaken. However, most of deep learning-based methods use deep features directly without them. This leads to the fusion performance degradation in some cases. To solve these drawbacks, in our paper, a deep features and zero-phase component analysis (ZCA) based novel fusion framework is proposed. Firstly, the residual network (ResNet) is used to extract deep features from source images. Then ZCA and l(1)-norm are utilized to normalize the deep features and obtain initial weight maps. The final weight maps are obtained by employing a soft-max operation in association with the initial weight maps. Finally, the fused image is reconstructed using a weighted-averaging strategy. Compared with the existing fusion methods, experimental results demonstrate that the proposed framework achieves better performance in both objective assessment and visual quality. The code of our fusion algorithm is available at https://github.com/hli1221/imagefusion_resnet50.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据