4.6 Article

LSTM-RNN-based defect classification in honeycomb structures using infrared thermography

期刊

INFRARED PHYSICS & TECHNOLOGY
卷 102, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.infrared.2019.103032

关键词

Honeycomb; Thermography; Non-destructive testing; Defect classification

资金

  1. National Natural Science Foundation of China [61505264]

向作者/读者索取更多资源

Honeycomb-structured materials are widely used in commercial and military aircraft. Manufacturing defects and damage during operation have become primary safety threats. This has increased the demand for non-destructive testing (NDT) for damage and flaws during aircraft operation and maintenance. Characterizing, or classifying defects, in addition to detecting them, is important. Classifying the liquids trapped in aircraft honeycomb cells is an example. A small amount of ingressed water is often tolerable, whereas a small amount of hydraulic oil may be an early warning of hydraulic system malfunction. This paper proposes an infrared thermography-based NDT technique and a long short term memory recurrent neural network (LSTM-RNN) model which automatically classifies common defects occurring in honeycomb materials. These including debonding, adhesive pooling, and liquid ingress. This LSTM-based algorithm has a greater than 90% sensitivity in classifying water, and hydraulic oil ingress. It has a greater than 70% sensitivity in classifying debonding and adhesive pooling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据