4.7 Article

A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSRE.2019.2937000

关键词

Lower extremity rehabilitation robot; MR actuators; human-robot interaction control; EMG

资金

  1. National Key Research and Development Plan [2017YFB1303200]
  2. Anhui Science and Technology Major [17030901034]

向作者/读者索取更多资源

Lower extremity paralysis has become common in recent years, and robots have been developed to help patients recover from it. This paper presents such a robotic system that allows for two working modes, the robot-active mode and human-active mode. The robot is designed to be equipped with magnetorheological (MR) actuators that have the advantages of high torque, fast response, flexible controllability, low power consumption and safety guarantee. The design and characteristics of the MR actuator are introduced. In the robot-active mode, the MR actuator works as a clutch to transfer the torque to the robotic joint safely. In the human-active mode, the MR actuator functions as a brake to provide resistance to help strengthen muscles. The working mode is determined by the human motion intention, which is detected via the skin surface electromyography (EMG) signals. The human-robot interaction torques are estimated using the EMG-driven impedance model. The biomechanical analysis based on Any Body Modeling System (AMS) is used to help optimization. Then, an adaptive control method is proposed to realize the assist-as-needed (AAN) training strategy, where the robot can switch between these two modes. Experiments are conducted to validate the proposed design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据