4.8 Article

Bio-functionalized silk hydrogel microfluidic systems

期刊

BIOMATERIALS
卷 93, 期 -, 页码 60-70

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2016.03.041

关键词

Silk; Fibroin; Horseradish peroxidase; Hydrogel; Microfluidics; Tissue engineering

资金

  1. NIH [P41 EB002520]
  2. AFOSR [FA9550-14-1-0015]
  3. DoD through the National Defense and Science & Engineering Graduate Fellowship (NDSEG) program

向作者/读者索取更多资源

Bio-functionalized microfluidic systems were developed based on a silk protein hydrogel elastomeric materials. A facile multilayer fabrication method using gelatin sacrificial molding and layer-by-layer assembly was implemented to construct interconnected, three dimensional (3D) microchannel networks in silk hydrogels at 100 gm minimum feature resolution. Mechanically activated valves were implemented to demonstrate pneumatic control of microflow. The silk hydrogel microfluidics exhibit controllable mechanical properties, long-term stability in various environmental conditions, tunable in vitro and in vivo degradability in addition to optical transparency, providing unique features for cell/tissue-related applications than conventional polydimethylsiloxane (PDMS) and existing hydrogelbased microfluidic options. As demonstrated in the work here, the all aqueous-based fabrication process at ambient conditions enabled the incorporation of active biological substances in the bulk phase of these new silk microfluidic systems during device fabrication, including enzymes and living cells, which are able to interact with the fluid flow in the microchannels. These silk hydrogel-based microfluidic systems offer new opportunities in engineering active diagnostic devices, tissues and organs that could be integrated in vivo, and for on-chip cell sensing systems. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据