4.8 Article

PALM: An Incremental Construction of Hyperplanes for Data Stream Regression

期刊

IEEE TRANSACTIONS ON FUZZY SYSTEMS
卷 27, 期 11, 页码 2115-2129

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TFUZZ.2019.2893565

关键词

Fuzzy systems; Mathematical model; Unmanned aerial vehicles; Training; Computational complexity; Network architecture; Real-time systems; Data stream; fuzzy; hyperplane; incremental; learning machine; parsimonious

资金

  1. NTU start up grant
  2. MOE Tier 1 Research Grant [RG130/17]

向作者/读者索取更多资源

Data stream has been the underlying challenge in the age of big data because it calls for real-time data processing with the absence of a retraining process and/or an iterative learning approach. In the realm of the fuzzy system community, data stream is handled by algorithmic development of self-adaptive neuro-fuzzy systems (SANFS) characterized by the single-pass learning mode and the open structure property that enables effective handling of fast and rapidly changing natures of data streams. The underlying bottleneck of SANFSs lies in its design principle, which involves a high number of free parameters (rule premise and rule consequent) to be adapted in the training process. This figure can even double in the case of the type-2 fuzzy system. In this paper, a novel SANFS, namely parsimonious learning machine (PALM), is proposed. PALM features utilization of a new type of fuzzy rule based on the concept of hyperplane clustering, which significantly reduces the number of network parameters because it has no rule premise parameters. PALM is proposed in both type-1 and type-2 fuzzy systems where all of which characterize a fully dynamic rule-based system. That is, it is capable of automatically generating, merging, and tuning the hyperplane-based fuzzy rule in the single-pass manner. Moreover, an extension of PALM, namely recurrent PALM, is proposed and adopts the concept of teacher-forcing mechanism in the deep learning literature. The efficacy of PALM has been evaluated through numerical study with six real-world and synthetic data streams from public database and our own real-world project of autonomous vehicles. The proposed model showcases significant improvements in terms of computational complexity and number of required parameters against several renowned SANFSs, while attaining comparable and often better predictive accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据