4.7 Article

Multi-Beam Forming and Controls by Metasurface With Phase and Amplitude Modulations

期刊

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
卷 67, 期 10, 页码 6680-6685

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAP.2019.2925289

关键词

Particle beams; Metamaterials; Scattering; Microwave communication; Antennas; Microwave imaging; Amplitude and phase modulations; complex reflection-coefficient addition; metasurface; multiple beams

资金

  1. National Key Research and Development Program of China [2017YFA0700201, 2017YFA0700202, 2017YFA0700203]
  2. National Natural Science Foundation of China [61631007, 61571117, 61501112, 61501117, 61522106, 61731010, 61735010, 61722106, 61701107, 61701108]
  3. 111 Project [111-2-05]

向作者/读者索取更多资源

Owing to the capability of providing a certain phase gradient on the interface between two media, metasurfaces have shown great promise for altering the directions of outgoing electromagnetic (EM) waves arbitrarily. With the suitable arrangement of particles on metasurfaces, anomalous reflection and refraction have been observed in wide frequency ranges. To completely control the propagation of EM waves, both phase and amplitude profiles are required in some applications. Herein, we propose a new type of metasurface with both phase and amplitude modulations, which is composed of C-shaped particles and can generate and control multiple beams using amplitude and phase responses simultaneously. An addition theorem of complex reflection coefficients is presented to acquire various states of multiple beams reflected from designed metasurfaces. Meanwhile, the intensities of multiple beams can be separately modulated as desired benefitting from the independent controls of phase and amplitude profiles. All the experimental results have good agreements with the numerical simulations. The presented method opens a new way to form and manipulate multiple beams using metasurfaces, which can find potential applications in beam shaping, radar detection systems, and high-quality holography.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据