4.8 Article

Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells

期刊

BIOMATERIALS
卷 103, 期 -, 页码 44-55

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2016.06.038

关键词

Cancer stem cells; Autophagy inhibition; Chemotherapeutics; Combination therapy; Nanoparticles; Breast cancer

资金

  1. National Basic Research Program of China [2013CB933900, 2015CB932100, 2012CB932500]
  2. National Natural Science Foundation of China [31470965, 51390482]

向作者/读者索取更多资源

Cancer stem cells (CSCs) have garnered increasing attention over the past decade, as they are believed to play a crucial role in tumor initiation, progression and metastasis, relapse and drug resistance. Therapeutic strategies which simultaneously exterminate both bulk tumor cells and the rare CSC subpopulation may produce striking response and result in long-term tumor remission. Accumulating evidence provides insight into the function of autophagy in maintenance, plasticity and survival of CSCs. The role of autophagy in the susceptibility of breast CSCs to chemotherapeutics was investigated in the present work, reduced 'stemness' and increased susceptibility to chemotherapy drugs (doxorubicin, DOX and docetaxel, DTXL) were observed after chloroquine (CQ)-mediated autophagy inhibition in sorted ALDH(hi) cells of breast cancer cell line MDA-MB-231. We further proved that nanoparticle-mediated autophagy inhibition promoted the efficacy of chemotherapeutics against ALDH(hi) MDA-MB-231 cells in vitro. Administration of drug delivery systems significantly prolonged the circulation half-life and augmented enrichment of two different drugs in tumor tissues and ALDH(hi) cells. More importantly, compared with single treatment, the combined delivery systems NPCQ/NPDOX and NPCQ/DOX (NPCQ/NPDTXL. and NPCQ/DTXL) showed most effective and persistent tumor growth inhibitory effect by eliminating bulk tumor cells as well as CSCs (p < 0.01) in an MDA-MB-231 orthotopic tumor murine model. Therefore, our research provides new insights into the nanoparticle-facilitated combination of autophagy inhibition and chemotherapy for effective therapy of breast cancer. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据