4.7 Article

Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau

期刊

GLOBAL ECOLOGY AND BIOGEOGRAPHY
卷 29, 期 1, 页码 50-64

出版社

WILEY
DOI: 10.1111/geb.13006

关键词

alpine grassland; carbon accumulation rate; climate change; dryland; Tibetan Plateau; time-scale

向作者/读者索取更多资源

Aim Climate change is expected to have important effects on plant phenology and carbon storage, with further shifts predicted in the future. Therefore, we proposed the community carbon accumulation rate (CAR) from the start of the growing season (SOS) to the peak of the growing season (POS) to fill the gap that the dynamic interactions between plant phenology and plant carbon research. Location Tibetan Plateau. Major taxa Alpine grassland plants. Time period 2015. Methods We conducted a transect survey across grasslands to measure community aboveground net primary production and carbon concentration. Additionally, phenology indicator data (SOS and POS) were extracted from the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index version 3 database. Next, we used 'changepoint' analysis to detect the patterns of CARs, and performed linear regression and one-way ANOVA to explore the variability of CARs in response to the environmental factors. Ultimately, the total effects of environmental factors on CARs were illustrated by a structural equation model. Results Our results indicated that three CAR patterns were detected, which are low-CAR (0.15 g/m(2)/day), medium-CAR (0.31 g/m(2)/day) and high-CAR (0.84 g/m(2)/day) patterns. We found that the availabilities of water and heat mediated CARs by regulating soil nutrition variability, and that drought climate and insufficient soil resources co-constrained the community CAR at long time-scales. In contrast, high CAR could be explained by more water and heat availability via either direct or indirect effects on soil moisture and soil nutrients. Main conclusions Our findings highlight that water and heat availability are critical driving factors in ecological carbon accumulation processes undergoing climate change. Meanwhile, the vegetative phenology also has important effect on carbon accumulation. Consequently, we propose incorporating the dynamic interactions between plant phenology and plant carbon into the ecological carbon cycle model to improve our understanding of resource utilization and survival strategies of plants under environmental change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据