4.8 Article

Potential feedback mediated by soil microbiome response to warming in a glacier forefield

期刊

GLOBAL CHANGE BIOLOGY
卷 26, 期 2, 页码 697-708

出版社

WILEY
DOI: 10.1111/gcb.14936

关键词

CO2-C release; feedback; glacier forefield; global warming; heat production; soil microbiome

资金

  1. National Key Program of China [2016YFC0502104]
  2. National Natural Science Foundation of China [41473079, 41673082, 41671270, 41273112]
  3. Second Tibetan Plateau Scientific Expedition and Research Program [2019QZKK0402]
  4. Chinese Academy of Sciences [2016039]

向作者/读者索取更多资源

Mountain glaciers are retreating at an unprecedented rate due to global warming. Glacier retreat is widely believed to be driven by the physiochemical characteristics of glacier surfaces; however, the current knowledge of such biological drivers remains limited. An estimated 130 Tg of organic carbon (OC) is stored in mountain glaciers globally. As a result of global warming, the accelerated microbial decomposition of OC may further accelerate the melting process of mountain glaciers by heat production with the release of greenhouse gases, such as carbon dioxide (CO2) and methane. Here, using short-term aerobic incubation data from the forefield of Urumqi Glacier No. 1, we assessed the potential climate feedback mediated by soil microbiomes at temperatures of 5 degrees C (control), 6.2 degrees C (RCP 2.6), 11 degrees C (RCP 8.5), and 15 degrees C (extreme temperature). We observed enhanced CO2-C release and heat production under warming conditions, which led to an increase in near-surface (2 m) atmospheric temperatures, ranging from 0.9 degrees C to 3.4 degrees C. Warming significantly changed the structures of the RNA-derived (active) and DNA-derived (total) soil microbiomes, and active microbes were more sensitive to increased temperatures than total microbes. Considering the positive effects of temperature and deglaciation age on the CO2-C release rate, the alterations in the active microbial community structure had a negative impact on the increased CO2-C release rate. Our results revealed that glacial melting could potentially be significantly accelerated by heat production from increased microbial decomposition of OC. This risk might be true for other high-altitude glaciers under emerging warming, thus improving the predictions of the effects of potential feedback on global warming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据