4.7 Article

Effects of Damming on River Nitrogen Fluxes: A Global Analysis

期刊

GLOBAL BIOGEOCHEMICAL CYCLES
卷 33, 期 11, 页码 1339-1357

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2019GB006222

关键词

nitrogen; river damming; nitrogen fixation; denitrification; burial; elimination

资金

  1. Canada Excellence Research Chair (CERC) program

向作者/读者索取更多资源

Damming creates biogeochemical hotspots along rivers that modify the riverine flow of nutrients, including nitrogen (N). Here, we quantify the impact of dams on global riverine N fluxes using a reservoir N mass balance model. In-reservoir processes represented in the model include primary production, mineralization of organic N, denitrification, and sedimentary burial. In addition, we explicitly account for N fixation as a source of N, assuming that the N to phosphorus (P) ratio of the inflow regulates the magnitude of N fixation in reservoirs. The model is scaled up via a Monte Carlo analysis that yields global relationships between N elimination in reservoirs, either by denitrification or burial, and the hydraulic residence time. These relationships are then combined with N loads to the world's dam reservoirs generated by the Global-NEWS model and the estimated N fixation fluxes. According to the results, in year 2000, worldwide N fixation in reservoirs was on the order of 70 Gmol yr(-1), while denitrification and burial in reservoirs eliminated around 270 Gmol yr(-1), equal to 7% of N loading to the global river network. The latter is predicted to double to 14% by 2030, mainly as a result of the current boom in dam building. The results further imply that, largely due to N fixation in reservoirs, damming causes a global upward shift in riverine N:P ratios, thus lessening N limitation in receiving water bodies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据