4.6 Article

Automatic velocity analysis using convolutional neural network and transfer learning

期刊

GEOPHYSICS
卷 85, 期 1, 页码 V33-V43

出版社

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/GEO2018-0870.1

关键词

-

向作者/读者索取更多资源

Velocity analysis can be a time-consuming task when performed manually. Methods have been proposed to automate the process of velocity analysis, which, however, typically requires significant manual effort. We have developed a convolutional neural network (CNN) to estimate stacking velocities directly from the semblance. Our CNN model uses two images as one input data for training. One is an entire semblance (guide image), and the other is a small patch (target image) extracted from the semblance at a specific time step. Labels for each input data set are the root mean square velocities. We generate the training data set using synthetic data. After training the CNN model with synthetic data, we test the trained model with another synthetic data that were not used in the training step. The results indicate that the model can predict a consistent velocity model. We also noticed that when the input data are extremely different from those used for the training, the CNN model will hardly pick the correct velocities. In this case, we adopt transfer learning to update the trained model (base model) with a small portion of the target data to improve the accuracy of the predicted velocity model. A marine data set from the Gulf of Mexico is used for validating our new model. The updated model performed a reasonable velocity analysis in seconds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据