4.7 Article

Revising tortuosity and multi-fractal assumptions of unsaturated hydraulic conductivity from critical path analysis of percolation theory

期刊

GEODERMA
卷 352, 期 -, 页码 213-227

出版社

ELSEVIER
DOI: 10.1016/j.geoderma.2019.06.002

关键词

-

向作者/读者索取更多资源

The relation between soil pore structure and water retention is complex and is often not well determined. We present a novel approach based on critical path analysis from percolation theory to refine hydraulic conductivity estimation from soil water retention curve by introducing a new tortuosity parameter as a function of scaling factor. We generalize this model to account for large shifts in the relation between soil pore structure and water retention, which are indicative of soils with multi-fractal properties, by employing a t-test on scaled saturation and suction data. The proposed model relaxes the constraints that were set on model parameters for multi-fractal soils in the literature by tuning all parameters against observed data using a multiple-start gradient-based optimization algorithm, and is applicable to a wider variety of soil textures. The optimization results are further evaluated against those of a Markov Chain Monte Carlo algorithm to ensure global optimum is found. Goodness-of-fit (GOF) measures, including geometric mean and standard deviation error ratios, and Nash-Sutcliffe efficiency, show that the proposed model presents less bias across the entire range of matric potential compared to its predecessor that under-estimate hydraulic conductivity in all studied cases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据