4.7 Article

Numerical simulation of coal dust explosion suppression by inert particles in spherical confined storage space

期刊

FUEL
卷 253, 期 -, 页码 1342-1350

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2019.05.102

关键词

Fly ash cenosphere; Inert particles; Coal dust explosion; Explosion suppression

资金

  1. National Key Research and Development Program [2016YFC0801703, 2017YFC0805207]
  2. Natural Science Foundation of Shandong Province [ZR2018BEE006]

向作者/读者索取更多资源

This study aims to predict the severity of coal dust explosion in confined space and to provide guidance for effective suppression of explosion. Based on kinetic analysis of devolatilization and heat transfer mechanism of inert particle-coal particle-pyrolysis gas in confined space, a mathematical model for suppressing coal dust explosion by inert powder was established. Compared with the experimental results of 20 L spherical explosion tank, relative errors of the maximum explosion pressure (P-max) and the maximum rise rate of explosion pressure ((dP/dt)(max)) predicted by the model were both < 0.15. The particle size of inert powder was concentrated in 0.1-10.0 pm, while 90 vol% coal particle was in the size range of 0-23 mu m. The convective of pyrolysis gas and coal was weaker than the radiation of coal and inert particle. When the proportion of inert suppressant increased to 50 wt%, (dP/dt)(max) was reduced from 50.14 MPa/s of raw coal to 6.70 MPa/s, and P-max was reduced from 0.78 MPa of raw coal to 0.16 MPa, which basically achieved the complete suppression of explosion. Due to the difference in inherent composition of coal, the P-max and (dP/dt)(max) of ZT lignite were higher than that of SM bituminite. This study can provide a basic reference for the severity of coal dust explosion and suppression prediction in industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据