4.7 Article Proceedings Paper

Comparative analysis of various methods to reduce CO2 emission in a biodiesel fueled CI engine

期刊

FUEL
卷 253, 期 -, 页码 146-158

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2019.04.163

关键词

CO2 emission; Karanja oil methyl ester; Low carbon biofuels; Zeolite; Methanol; Magnetic based reforming system

向作者/读者索取更多资源

The main aim of this experimental work is to reduce engine-out carbon dioxide (CO2) emission of CI engine fuelled with Karanja oil methyl ester (K100). K100 emitted higher NO and CO2 and lower smoke in comparison to diesel as a result of high fuel borne carbon and oxygen. Various techniques namely 1. Low-carbon biofuel blending 2. Post-combustion carbon capture system (PCCCS) 3. Oxygenate blending 4. Pre-combustion treatment system was adopted to reduce CO2 emission. Equal volume blending of low-carbon biofuels namely eucalyptus oil (EU), camphor oil (CMO), pine oil (PO) and Orange oil (ORG) with K100 reduces CO2 emission. K50-O50 blend emitted minimum CO2, about 27% less in comparison to K100. PCCCS with zeolite, activated carbon and liquid mono ethanolamine (MEA) injection with K50-O50 reduced CO2 emission further. CO2 emission for K50-O50+zeolite is 13.5% less in comparison to K50-O50 at maximum load. CO2 is further reduced with oxygenate blending. Oxygenates namely methanol (M), ethanol (E), n-butanol (B), n-pentanol (P) and acetone (A) were blended 20% by volume (based on the knock limit) with K50-O50 and tested along with zeolite based PCCCS. Among the oxygenates, methanol blending with K50-O50 with ZPCCCS lessened CO2 emission by 65% in comparison to K100. Magnetic fuel reforming system based pre-combustion treatment system reduced CO2 emission further. The combination of all the techniques emitted 68.5% less CO2 in comparison to K100 at maximum load. The effect of the techniques on other emission and performance parameters were also discussed in detail.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据