4.7 Article

Free radicals formation on thermally decomposed biomass

期刊

FUEL
卷 255, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2019.115802

关键词

Biomass pyrolysis; Free radicals; Char reactivity

向作者/读者索取更多资源

Pyrolysis provides an attractive alternative for the upgrading of agro-wastes to energy and chemicals. However, consistent quality of the final products is still a goal to be achieved at industrial level. The present study aims at complementing existing results recently published by the authors and investigating the physico-chemical evolution and oxidative reactivity of solid products of pyrolysis of citrus waste. Chars derived from slow pyrolysis (50 degrees C min(-1), 200-650 degrees C peak temperature) of orange and lemon pulp (OP and LP) in a horizontal batch reactor were characterized by means of Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Electron Paramagnetic Resonance (EPR) and Raman spectroscopy. Results show how the onset of breaking of covalent bonds in matrix is triggered by reaching pyrolysis temperatures of 330-350 degrees C. Around those temperatures, the population of free-radicals significantly increases on solids and chars become more reactive, thereby favoring retrogressive, recombination and secondary solid-vapor reactions. Results also show that the higher content of lignin on LP may facilitate the formation of aromatic networks via lignin fragmentation and condensation above 500 degrees C. This trend is also confirmed by DSC patterns in which, above 500 degrees C, significantly more endothermic reactions occur in LP as a comparison to OP. This conclusion is further corroborated by more pronounced G-band Raman shifts shown for LP as a comparison to OP. The present results shed new light on the thermochemical breakdown of solid agro-wastes and provide insights for development of slow pyrolysis technology toward the production of valuable renewable carbonaceous materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据