4.3 Article

Characterization of Salmonella enterica Isolates from Selected US Swine Feed Mills by Whole-Genome Sequencing

期刊

FOODBORNE PATHOGENS AND DISEASE
卷 17, 期 2, 页码 126-136

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/fpd.2019.2701

关键词

next generation sequencing; Salmonella; swine feed mills

资金

  1. Center for Food Safety and Applied Nutrition at the U.S. Food and Drug Administration
  2. National Pork Board

向作者/读者索取更多资源

Every year salmonellosis is responsible for $2.3 billion in costs to the U.S. food industry, with nearly 6% of the reported cases associated with pork and/or pork products. Several studies have demonstrated the role of pigs as Salmonella reservoirs. Furthermore, this pathogen has been identified as a potential biological hazard in many livestock feeds. The overall objective of this research was to characterize Salmonella enterica isolates in selected U.S. swine feed mills by whole-genome sequencing (WGS) and evaluate isolates in association with the season and feed production stages. Salmonella isolates were collected from 11 facilities during a previous study. Samples were analyzed for Salmonella prevalence following the U.S. Department of Agriculture guidelines and confirmed by PCR. WGS was carried out on either the MiSeq or NextSeq sequencer. De novo genome assemblies were obtained with the Shovill pipeline, version 0.9. ResFinder and SPIFinder were used to identify antibiotic resistance genes and pathogenicity islands. Finally, their phylogenetic relationship and diversity were determined by core genome multilocus sequence typing. Overall, our analysis showed the presence of S. enterica in the feed mill environment. Isolates belonged to 16 different serotypes. Salmonella Agona, Salmonella Mbandaka, Salmonella Senfenberg, and Salmonella Scharzengrund were the most frequently found, and 18 single-nucleotide polymorphism clusters were identified. In silico analysis showed that 40% of the strains carried at least one antimicrobial resistance gene. All isolates in this study could be considered of public health concern and pathogenic potential. Our findings underscore the potential role of the feed mill environment as the pathogen entry route into the human food value chain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据