4.7 Article

AAVshRNA-mediated PTEN knockdown in adult neurons attenuates activity dependent immediate early gene induction

期刊

EXPERIMENTAL NEUROLOGY
卷 326, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2019.113098

关键词

Sensorimotor cortex; Dentate gyrus; Perforant path; AAV-shRNA; PTEN; Immediate early gene; C-fos; Phosphatase and tensin homolog; mTOR; Ribosomal protein 56; ERK1/2

资金

  1. NIH [5T32 NS045540, NS047718]

向作者/读者索取更多资源

Genetic deletion or knockdown of PTEN enables regeneration of CNS axons, enhances sprouting of intact axons after injury, and induces de novo growth of uninjured adult neurons. It is unknown, however how PTEN deletion in mature neurons alters neuronal physiology. As a first step to address this question, we used immunocytochemistry for activity-dependent markers to assess consequences of PTEN knockdown in cortical neurons and granule cells of the dentate gyrus. In adult rats that received unilateral intra-cortical injections of AAV expressing shRNA against PTEN, immunostaining for c-fos under resting conditions (home cage, HC) and after 1 h of exploration of a novel enriched environment (EE) revealed no hot spots of c-fos expression that would suggest abnormal activity. Counts revealed similar numbers of c-fos positive neurons in the area of PTEN deletion vs. homologous areas in the contralateral cortex in the HC and similar induction of c-fos with EE. However, IEG induction in response to high frequency stimulation (HFS) of the cortex was attenuated in areas of PTEN deletion. In rats with AAVshRNA-mediated PTEN deletion in the dentate gyrus, induction of the IEGs c-fos and Arc with HFS of the perforant path was abrogated in areas of PTEN deletion. Immunostaining using phosphospecific antibodies for phospho-S6 (a downstream marker for mTOR activation) and phospho-ERK1/2 revealed abrogation of S6 phosphorylation in PTEN-deleted areas but preserved activation of phosphorylation of ERK1/2. Significance statement Deletion or knockdown of the tumor suppressor gene PTEN enables regenerative growth of adult CNS axons after injury, which is accompanied by enhanced recovery of function. Consequently, PTEN represents a potential target for therapeutic interventions to enhance recovery after CNS injury. Here we show that activity-dependent IEG induction is attenuated in PTEN-depleted neurons. These findings raise the intriguing possibility that functional recovery due to regenerative growth may be limited by the disruption of plasticity-related signaling pathways, and that recovery might be enhanced by restoring PTEN expression after regenerative growth has been achieved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据