4.4 Article

Dynamics of functional connectivity in multilayer cortical brain network during sensory information processing

期刊

EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
卷 228, 期 11, 页码 2381-2389

出版社

SPRINGER HEIDELBERG
DOI: 10.1140/epjst/e2019-900077-7

关键词

-

资金

  1. Russian Science Foundation [17-72-30003]
  2. Russian Science Foundation [17-72-30003] Funding Source: Russian Science Foundation

向作者/读者索取更多资源

Topology of a functional brain multilayer network is dynamically adjusted to provide optimal performance during accomplishing cognitive tasks, including sensory information processing. Functional connectivity between brain regions is achieved in terms of correlation or synchronization inference in recorded signals of neuronal activity. The promising approach for studying cortical network structure implies considering functional interactions in different frequency bands on the different layers of multilayer network model. Links between these layers can be restored based on cross-frequency couplings. While the topology of functional connectivity within each layer can be effectively restored from registered neurophysiological signals, mechanisms underlying coupling between different layers remain poorly understood. Here we consider evolution of the cortical network topology in alpha and beta frequency bands during visual stimuli processing. For each frequency band the functional connectivity between different brain regions is estimated by comparing Fourier spectra of EEG signals. The obtained functional topologies are considered as the layers of two-layer network. In the framework of a multilayer model we analyze evolution of functional network topology on both layers and reveal features of intralayer interaction underlying visual information processing in the brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据