4.7 Article

Overview on GHG emissions of raw milk production and a comparison of milk and cheese carbon footprints of two different systems from northern Spain

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 27, 期 2, 页码 1650-1666

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-019-06857-6

关键词

LCA; Dairy farm; Raw milk production; Pasture-based; Semi-confinement; Carbon footprint; Cheese

资金

  1. Employment, Industry and Tourism Office of the Principality of Asturias (Spain) [IDI/2018/000127]

向作者/读者索取更多资源

Milk production has been estimated to contribute 3-4% of anthropogenic greenhouse gas (GHG) emissions. However, the carbon footprint associated with raw milk can vary, depending on a variety of factors, such as the geographical area, species of cow and production system. In this study, a global overview of research published on the carbon footprint (CF) of raw cow milk is provided. Additionally, two different dairy systems (semi-confinement and pasture-based) have been analysed by life-cycle assessment (LCA) in order to determine their effect on the CF of the milk produced. Inventory data were obtained directly from these facilities, and the main factors involved in milk production were included (co-products, livestock food, water, electricity, diesel, cleaning elements, transport, manure and slurry management, gas emissions to air etc.). In agreement with reviewed literature, it was found that the carbon footprint of milk was basically determined by the cattle feeding system and gas emissions from the cows. The values of milk CF found in the systems under study were within the range for cow milk production worldwide (0.9-4.7 kgCO(2)eq kg(FPCM)(-1)). Specifically, in the semi-confinement and the pasture-based dairy farms, 1.22 and 0.99 kgCO(2)eq kg(FPCM)(-1) were obtained, respectively. The environmental benefits obtained with the pasture grazing system are not only mainly due to the lower use of purchased fodder but also to the allocation between milk and meat that was found to be a determining methodological factor in CF calculation. Finally, data from the evaluated dairy systems have been employed to analyse the influence of raw milk production on cheese manufacturing. With this aim, the CF of a small-scale cheese factory has also been obtained. The main subsystems involved (raw materials, water, electricity, energy, cleaning products, packaging materials, transport, wastes and gas emissions) were included in the inventory of the cheese factory. CF values were 16.6 and 14.7 kgCO(2)eq kg(-1) of cheese for milk produced in semi-confinement and pasture-based systems, respectively. The production of raw milk represented more than 60% of CO(2)eq emissions associated with cheese, so the primary production is the critical factor in reducing the GHG emissions due to cheese making.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据