4.8 Article

Iron Plaque at Rice Roots: No Barrier for Methylated Thioarsenates

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 53, 期 23, 页码 13666-13674

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.9b04158

关键词

-

资金

  1. German Academic Scholarship Foundation
  2. German Research Foundation (DFG) [PL 302/25, PL 302/26]

向作者/读者索取更多资源

Iron (hydr)oxide coating at rice roots, so-called iron plaque (IP), is often an important barrier for uptake of inorganic oxyarsenic species and their accumulation in rice grains. Sorption of methylated thioarsenates, which can co-exist with inorganic and methylated oxyarsenates in paddy soils, was not studied yet, even though these toxic species were detected in xylem and grains of rice plants before. Hydroponic experiments at pH 6.5 with 20 day-old rice plants showed lower net arsenic enrichment in IP for plants exposed to monomethyl-thioarsenate (MMMTA) compared to monomethylarsenate (MMA) and no enrichment for dimethyl-monothioarsenate (DMMTA). Goethite was the dominant mineral phase in our IP. Sorption experiments with synthesized goethite and ferrihydrite revealed a 30-times-higher sorption capacity for MMMTA to amorphous ferrihydrite than to crystalline goethite, comparable to methylated oxyarsenates. No evidence for direct MMMTA binding was found. Instead, we postulate that MMMTA transformation to MMA is a prerequisite for removal. DMMTA showed very little sorption, even to amorphous ferrihydrite, which is in line with a lack of direct binding and reported slow transformation to dimethylarsenate. Our study implies that IP is no effective barrier for methylated thioarsenates and that especially DMMTA is very mobile with a high risk of uptake in rice plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据