4.7 Article

Effects of microplastics on growth, phenanthrene stress, and lipid accumulation in a diatom, Phaeodactylum tricornutum

期刊

ENVIRONMENTAL POLLUTION
卷 257, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.113628

关键词

Microplastics; Marine microalgae; Adsorption; Polymer-size dependent toxicity; Machine-learning prediction

资金

  1. National Natural Science Foundation of China [41907319]
  2. General Scientific Project of Zhejiang Education Department [Y201840255]
  3. 2017 Scientific Research Startup Foundation of Zhejiang Ocean University [12245090418]

向作者/读者索取更多资源

Most laboratory studies have focused on the effects of nanoplastics instead of plastics at the micrometer scale, which are the major microplastics (MPs) discarded in marine environments. Knowledge on the potential effects of micrometer scale plastics on marine microalgae remains limited. It remains unknown whether the micrometer scale plastics also affect microalgal growth, lipid accumulation and resistance to organic contaminants? in addition, the role of polymer-size on the potential hazardous effects of MPs on microalgae is unknown. In the present study, cell populations of a marine diatom, Phaeodactylum tricornutum, were treated with micrometer scale polyethylene (PEMP, 150 mu m) and unplasticized polyvinyl chloride (uPVCMP, 250 mu m) powders in the laboratory. Growth was assessed using a hemacytometer and neutral lipid concentrations were evaluated using the Nile Red staining method under short-term (four days) and long-term (nine days) exposure. The effects of combined PEMP and phenanthrene (Phe), and uPVCMP and Phe exposures over four days on growth were investigated. Importance scores and SHapley Additive exPlanations (SHAP) values were calculated to assess the contributions of seven factors in exposure systems to the hazardous effects of MPs on microalgae using a machine-learning prediction based on 165 data sets. Both MP types did not influence algal growth and lipid accumulation but minimized algal inhibition by the action of Phe at four days. In addition, lipid accumulation was induced at nine days. Both importance scores and SHAP values indicated that MP polymer-size was the key factor influencing MP toxicity in microalgae. In conclusion, MPs had adverse effects only in chronic tests and the potential adsorption of MPs could have led to the lower levels of toxicity in a combined MP-Phe exposure system. Compared to nanoplastics, MPs in the hundred-micrometer range do not significantly affect growth and their adsorption would not be influenced by size. Therefore, MP size is the most critical factor that should be considered in future laboratory tests and eco-toxicological risk assessments for microalgae. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据