4.7 Article

A combined experimental and computational study on the oxidative degradation of bromophenols by Fe(VI) and the formation of self-coupling products

期刊

ENVIRONMENTAL POLLUTION
卷 258, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.113678

关键词

Fe(VI); Bromophenols; Reaction kinetics; Mechanism; Density functional theory calculation

资金

  1. National Natural Science Foundation of China [21577063, 21607073, 21906082]
  2. China Postdoctoral Science Foundation [2019M651787]
  3. Deanship of Scientific Research at Princess Nourah bint Abdulrahman University

向作者/读者索取更多资源

In this study, the degradation of eight bromophenols (BPs), including monobromophenols (2-BP, 3-BP, and 4-BP), dibromophenols (2,4-DBP, 2,6-DBP, and 3,5-DBP), a tribromophenol (2,4,6-TBP) and a pentabromophenol (PBP), by a Fe(VI) reaction process at a pH of 8.0 was systematically studied. It was concluded that their degradation rates increased with increasing Fe(VI) concentrations in solution. The removal of 2,4,6-TBP, 2-BP, and 2,6-DBP was faster than that of the other five BPs, which could be attributed to the position of the substituting Br atom. Moreover, the direct oxidation and coupling reactions greatly influenced the reactivity of the bromophenols with Fe(VI). The electron paramagnetic resonance (EPR) analysis confirmed the presence of hydroxyl radicals in present system. The oxidation reaction products of PBP and 2-BP were recognized by an electrospray time-of-flight mass spectrometer; hydroxylation, hydroxyl substitution, the cleavage of the C-C bond, direct oxidation and polymerization via an end linking mechanism were noticeably found in the reaction process, resulting in the formation of polymerization products and causing hydroxylation to occur. Theoretical calculations further determined the possible oxidation sites of 2-BP and PBP. This study may provide comprehensive and important information on the remediation of BPs by Fe(VI). (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据