4.7 Article

Environmental legacy and catchment erosion modulate sediment records of trace metals in alpine lakes of southwest China

期刊

ENVIRONMENTAL POLLUTION
卷 254, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2019.113090

关键词

Lake sediments; Trace metals; Ancient mines; Catchment erosion; Southeast Tibet

资金

  1. National Key Research and Development Program of China [2017YFA0605202]
  2. National Natural Science Foundation of China [U1133601, 41771239]
  3. Ministry of Education of China [213034A]

向作者/读者索取更多资源

Sediment records are widely used to infer impact of atmospheric metal deposition in alpine lakes, however, the legacy effect and catchment erosion of historical pollutants could potentially affect metal influx into lakes. Here, we collect data (including six trace metals and three lithogenic elements) from well-dated sediment cores of seven alpine lakes in southeast Tibet, which is adjacent to southwest China. This area has a documented history of preindustrial pollution. Metals such as cadmium (Cd), zinc (Zn) and arsenic (As) are found at relatively low concentrations until a clear increase is observed after 1950s across lakes. This result is consistent with accelerating atmospheric metal deposition due to socioeconomic development in the region. We observe no synchronous trend across lakes in the changes of lead (Pb), copper (Cu) and silver (Ag), which show no significant increase after similar to 1950 over the last two centuries in most of the study lakes. The historical trends of Pb-206/Pb-207 ratio reflect an important source of anthropogenic Pb associated with preindustrial mining and smelting in this study region, suggesting a substantial impact of legacy contamination from ancient mines. Furthermore, the temporal variations in these six anthropogenic metals are largely accounted for by terrigenous elements (e.g. aluminum (Al) and titanium (Ti)) in most of the study lakes, and to a lesser degree by sediment grain sizes and organic matter content, suggesting a significant role of catchment erosion in modulating sediment metal signals. In all, this study highlights the legacy effect of historical pollutants may have enhanced the forcing of catchment erosion in modulating the sediment signals of anthropogenic deposition in southeast Tibet. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据