4.8 Article

Temporal effect of MgO reactivity on the stabilization of lead contaminated soil

期刊

ENVIRONMENT INTERNATIONAL
卷 131, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2019.104990

关键词

Soil pollution; Lead contamination; Remediation; Reactive magnesia; Reactivity; Accelerated ageing

资金

  1. China's National Water Pollution Control and Treatment Science and Technology Major Project [2018ZX07109-003]
  2. National Key Research and Development Program of China [2018YFC1801300]
  3. Killam Trusts of Canada

向作者/读者索取更多资源

Elevated soil lead (Pb) concentrations are a global concern owing to the toxic effects of this heavy metal. Solidification/stabilization (S/S) of soils using reagents like Portland cement (PC) is a common approach for the remediation of Pb contaminated sites. However, it has been reported that under long-term field conditions, the performance of PC treatments can diminish significantly. Therefore, novel reagents that provide longer-term stabilization performance are needed. In this study, four magnesium oxide (MgO) products of different reactivity values were applied (5 wt%) to a Pb contaminated clayey soil. The short-term (1-49 days) and long-term (25-100 years) temporal stabilization effects were investigated by laboratory incubation and accelerated ageing methods, respectively. The concentration of Pb in Toxicity Characterization Leaching Procure (TCLP) leachate was -14 mg/L for the untreated soil; -1.8 times higher than the TCLP regulatory level (5 mg/L). Only one day after treatment with MgO, the leachate concentration was reduced to below the regulatory level (a reduction of 69.4%-83.2%), regardless of the MgO type applied. However, in the long-term accelerated ageing experiments, only treatments using the most reactive MgO type could provide leachate concentrations that were consistently below the TCLP threshold throughout the 100 years of simulated ageing. The soil treated with the MgO of lowest reactivity was the first to exceed the regulatory level, at simulated year 75. It is thus demonstrated that MgO reactivity has a significant effect on its long-term effectiveness for contaminated soil stabilization. This is attributed to differences in their specific surface area and readiness to carbonate, which may facilitate the immobilization of Pb in the long term. It is also noteworthy that compared to PC, reactive MgO is more environmentally friendly owing to lower energy consumption and reduced CO2 emissions during its manufacture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据