4.6 Article

Temperature Effects and Entropy Generation of Pressure Retarded Osmosis Process

期刊

ENTROPY
卷 21, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/e21121158

关键词

pressure retarded osmosis; temperature effect; power density; entropy generation; optimum flow

资金

  1. Natural Sciences and Engineering Research Council of Canada [401366]

向作者/读者索取更多资源

Pressure retarded osmosis (PRO) is considered as one of the promising and new techniques to generate power. In this work, a numerical model was used to study the effect of the flow streams temperature on the performance of the PRO process and entropy generation. The variation of the feed solution and draw solution temperatures, pressure difference, concentration difference, and flow rates on the power density and entropy generation were discussed. The model results were validated with experimental measurements obtained from literature and showed a good agreement with the model predictions. It was found that the power density increases by about 130% when both feed solution and draw solution temperatures increase from 20 degrees C to 50 degrees C. The feed solution temperature has more impact on the power density than that of the draw solution. This is due to the direct effect of the feed solution temperature on the water permeability and diffusion coefficient. The effect of the feed solution temperature becomes significant at higher concentration differences. Whereas, at low concentrations, the power density slightly increases with the feed temperature. Furthermore, it is found that there is an optimum volumetric flow in the channels that maximizes the power density and minimizes the entropy generation when fixing other operating conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据