4.7 Article

An analytical algorithm for reasonable central tower stiffness in the three-tower suspension bridge with unequal-length main spans

期刊

ENGINEERING STRUCTURES
卷 199, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.engstruct.2019.109595

关键词

Three-tower suspension bridge; Unequal-length main spans; Central tower effect; Analytical algorithm; Central tower stiffness; GRG method

资金

  1. National Natural Science Foundation of China [51678148]
  2. Natural Science Foundation of Jiangsu Province [BK20181277]
  3. National Key R&D Program of China [2017YFC0806009]

向作者/读者索取更多资源

Three-tower suspension bridges with unequal-length main spans more easily adapt to different terrain features and therefore, have broader application prospects. However, due to the unique central tower effect of the three-tower suspension bridge, it is required that the lateral stiffness of the central tower in the longitudinal direction of the bridge girder should be neither too large nor too small. To calculate the reasonable range for the central tower stiffness in the three-tower suspension bridge with unequal-length main spans, this study proposes an analytical algorithm based on the segmental catenary theory. Firstly, hanger tensile forces under the joint action of dead and live loads are calculated. Next, the governing equations for the main cable shape of each span are constructed for the following conditions: closure of elevation difference, closure of span length, moment balance of splay saddle, and conservation of unstrained length of the main cable. The solutions of the derived set of simultaneous equations are obtained for (i) deflection-to-span ratio limit of the stiffening girder and (ii) anti-slip control between the main cable and saddle conditions, which yield the lower and upper limits of reasonable stiffness of the central tower, respectively. This study discusses a three-tower suspension bridge spanned as 248 m + 1060 m + 1360 m + 380 m. The calculation is performed for the two cases of the live load application: (i) to the longer main span and (ii) to the shorter main span. The results obtained proved the feasibility and effectiveness of the proposed algorithm. The following findings are reported: The upper and lower limits of reasonable central tower stiffness are derived from the above two cases, respectively. Therefore, it is not sufficient to consider only the former case when calculating the central tower stiffness of the three-tower suspension bridge with equal-length main spans. The dead-to-live load ratio and friction coefficient between the main cable and saddle also strongly influence the central tower stiffness: their increase can expand the reasonable range of the latter but if they are too small, no such optimization can be provided.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据