4.4 Article

Structure prediction of multi-principal element alloys using ensemble learning

期刊

ENGINEERING COMPUTATIONS
卷 37, 期 3, 页码 1003-1022

出版社

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/EC-04-2019-0151

关键词

Machine learning; Random forest; Multi-principal element alloys; High entropy alloy; Phase prediction; Structure prediction

向作者/读者索取更多资源

Purpose The purpose of this paper, is to predict the various phases and crystal structure from multi-component alloys. Nowadays, the concept and strategies of the development of multi-principal element alloys (MPEAs) significantly increase the count of the potential candidate of alloy systems, which demand proper screening of large number of alloy systems based on the nature of their phase and structure. Experimentally obtained data linking elemental properties and their resulting phases for MPEAs is profused; hence, there is a strong scope for categorization/classification of MPEAs based on structural features of the resultant phase along with distinctive connections between elemental properties and phases. Design/methodology/approach In this paper, several machine-learning algorithms have been used to recognize the underlying data pattern using data sets to design MPEAs and classify them based on structural features of their resultant phase such as single-phase solid solution, amorphous and intermetallic compounds. Further classification of MPEAs having single-phase solid solution is performed based on crystal structure using an ensemble-based machine-learning algorithm known as random-forest algorithm. Findings The model developed by implementing random-forest algorithm has resulted in an accuracy of 91 per cent for phase prediction and 93 per cent for crystal structure prediction for single-phase solid solution class of MPEAs. Five input parameters are used in the prediction model namely, valence electron concentration, difference in the pauling negativeness, atomic size difference, mixing enthalpy and mixing entropy. It has been found that the valence electron concentration is the most important feature with respect to prediction of phases. To avoid overfitting problem, fivefold cross-validation has been performed. To understand the comparative performance, different algorithms such as K-nearest Neighbor, support vector machine, logistic regression, naive-based approach, decision tree and neural network have been used in the data set. Originality/value In this paper, the authors described the phase selection and crystal structure prediction mechanism in MPEA data set and have achieved better accuracy using machine learning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据