4.7 Article

Comparison and sensitivity analysis of the efficiency enhancements of coal-fired power plants integrated with supercritical CO2 Brayton cycle and steam Rankine cycle

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 198, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2019.111918

关键词

Energy saving; Exergy analysis; Sensitivity analysis; Supercritical CO2 cycle; Thermodynamics

资金

  1. National Key R&D Program of China [2016YFB0600105]
  2. Science and Technology on Thermal Energy and Power Laboratory Open Foundation of China [TPL2019AA001]
  3. Science and Technology Planning Project of Xi'an [201809160CX1JC2-04]

向作者/读者索取更多资源

The supercritical CO2 (SCO2) power cycle, which is highly efficient and cost effective and features a compact structure, is expected to replace steam Rankine cycle and bring technological revolution to coal-fired power plants. To obtain the quantitative energy saving potentials of the SCO2 power cycle, this study compared the thermodynamic performances of coal-fired power plants with SCO2 cycle and 10 in-service coal-fired power plants with steam as the working fluid. The efficiencies of 538 degrees C, 566 degrees C, and 600 degrees C typical power plants were increased by the SCO2 cycle by 2.52%, 2.39%, and 2.84%, respectively. Exergetic analysis revealed that the decrease in heat transfer irreversibility in the boilers mainly caused the efficiency enhancement. Then, the main devices' performance parameters, including the isentropic efficiency of the compressor, isentropic efficiency of the turbine, pressure drops of the heat exchangers, regenerator terminal temperature difference, and leakage ratio, were analyzed in terms of their sensitivity to the efficiency enhancement of coal-fired power plants integrated with the SCO2 cycle. The influence of these parameters on the internal irreversibility of coal-fired power plants was also studied. With a 600 degrees C power plant as an example, the energy saving limits of the main devices' parameters of SCO2 cycle in comparison with the steam Rankine cycle are as follows: the compressor isentropic efficiency exceeded 75%, the turbine isentropic efficiency exceeded 86%, the pressure drop of the heat exchanger was less than 0.35 MPa, the temperature difference of the regenerator terminal was less than 21 degrees C, the leakage ratio was less than 2.5% when the leakage was not recovered, and the leakage ratio was less than 16% when the leakage was recovered.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据