4.7 Article

Maximizing specific work output extracted from engine exhaust with novel inverted Brayton cycles over a large range of operating conditions

期刊

ENERGY
卷 191, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2019.116350

关键词

Engine exhaust heat recovery; Inverted Brayton cycle (IBC); Open Rankine cycle; Bottoming cycles; Water drainage; Design optimization

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canadian Queen Elizabeth II Diamond Jubilee Scholarship

向作者/读者索取更多资源

The heat contained in internal combustion engine exhaust gases can be converted into mechanical energy by using an Inverted Brayton Cycle (IBC). In this paper, five different IBC versions are numerically modeled and optimized to maximize their specific work output: (i) basic IBC, (ii) IBC with liquid water drainage (IBC/D), (iii) IBC with liquid water drainage and a steam turbine (IBC/D/S), (iv) IBC with liquid water drainage and a refrigeration cycle (IBC/D/R), and (v) IBC with liquid water drainage, a steam turbine and a refrigeration cycle (IBC/D/S/R). The three latter cycles are presented for the first time in literature. The optimization is performed for a wide range of inlet gases temperatures (600-1200 K) and heat sink temperatures (280-340 K). Among the five IBCs, the IBC/D/S/R has the highest specific work output for the whole range of operating temperatures. A comparison with the subcritical Rankine cycle and Organic Rankine Cycles using isobutane and benzene shows that an IBC system might be a better choice for specific operating temperatures. Liquid water addition in the IBC/D/S/R leads to optimized designs using only the steam turbine at high inlet gas temperatures, indicating that a Rankine cycle is better suited for these conditions. (C) 2019 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据