4.7 Article

Contract design of direct-load control programs and their optimal management by genetic algorithm

期刊

ENERGY
卷 186, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2019.07.137

关键词

Demand response; Direct-load control; Microgrid; Genetic algorithm

资金

  1. FEDER funds through COMPETE 2020
  2. Portuguese funds through FCT [POCI-01-0145-FEDER-029803 (02/SAICT/2017)]

向作者/读者索取更多资源

A computational model for designing direct-load control (DLC) demand response (DR) contracts is presented in this paper. The critical and controllable loads are identified in each node of the distribution system (DS). Critical loads have to be supplied as demanded by users, while the controllable loads can be connected during a determined time interval. The time interval at which each controllable load can be supplied is determined by means of a contract or compromise established between the utility operator and the corresponding consumers of each node of the DS. This approach allows us to reduce the negative impact of the DLC program on consumers' lifestyles. Using daily forecasting of wind speed and power, solar radiation and temperature, the optimal allocation of DR resources is determined by solving an optimization problem through a genetic algorithm where the energy content of conventional power generation and battery discharging energy are minimized. The proposed approach was illustrated by analyzing a system located in the Virgin Islands. Capabilities and characteristics of the proposed method in daily and annual terms are fully discussed, as well as the influence of forecasting errors. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据