4.6 Article

Physical absorption vs covalent binding of graphene oxide on glassy carbon electrode towards a robust aptasensor for ratiometric electrochemical detection of vascular endothelial growth factor (VEGF) in serum

期刊

ELECTROCHIMICA ACTA
卷 331, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.135321

关键词

Surface modification; Physical absorption; Covalent binding; Ratiometric electrochemical aptasensor; Vascular endothelial growth factor (VEGF)

资金

  1. National Natural Science Foundation of China [21575045]
  2. Australia Research Coucil Future Fellowship [FT160100039]
  3. University of New South Wales Biomedical Engineering Seed Fund

向作者/读者索取更多资源

Achieving a biosensing interface with desirable performance is essential to a successful biosensor. In this paper, we developed a robust aptasensor by modifying methylene blue loaded graphene oxide (GO/MB) and ferrocene-labeled aptamer onto glassy carbon (GC) electrodes to realize the dual electrochemical signal mode ratiometric quantification of vascular endothelial growth factor (VEGF) in serum. For comparison, two sensing interfaces based on the covalent attachment (GC-ph-GO/MB- streptavidin-aptamer) and physical absorption GC-GO/MB-streptavidin-aptamer) of GO/MB to GC electrodes were fabricated, respectively. Redox molecule ferrocene labeled structure-switching aptamers having affinity to VEGF were used as the recognition probes providing electrochemical signal readout with the presence of the analyte VEGF. Larger amount of aptamers was observed on the GC-GO/MB-streptavidin-aptamer than that on GC-ph-GO/MB-streptavidin-aptamer while having the similar stability, which contributed to the higher sensitivity of GC-GO/MB-streptavidin-aptamer. The linear range of GC-GO/MB-streptavidin-aptamer and GC-ph-GO/MB-streptavidin-aptamer for detection of VEGF was 10-500 pg mL(-1) and 20-500 pg mL(-1), respectively. The GC-GO/MB-streptavidin-aptamer surface was able to realize the dual-signal mode ratiometric quantification of VEGF with wider linear range comparing with a single-signal mode detection. This electrochemical apatasensor provides a robust universal biosensing platform for sensitive ratiometric detection of a spectrum of analytes in real time. (c) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据