4.6 Article

Self-repairing hybrid nanosheet anode catalysts for alkaline water electrolysis connected with fluctuating renewable energy

期刊

ELECTROCHIMICA ACTA
卷 323, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.134812

关键词

Alkaline water electrolysis; Self-repairing catalyst; Oxygen evolution reaction; Nano sheet; Renewable energy

资金

  1. Japan Society for the Promotion of Science (JSPS) [17K06803]
  2. Grants-in-Aid for Scientific Research [17K06803] Funding Source: KAKEN

向作者/读者索取更多资源

Water electrolysis is a core technology in the conversion of renewable energy to hydrogen, which is useful for energy storage and transportation. Alkaline water electrolysis (AWE) is one of the most suitable technologies because of its low cost and applicability to large-scale production of hydrogen; however, the AWE system exhibits electrode degradation under fluctuating electricity from renewable energy such as solar and wind energies. In this study, we demonstrate the use of a hybrid cobalt nanosheet (Co-ns), comprising brucite-type cobalt hydroxide modified with the tripodal ligand tris(hydroxymethyl)aminomethane, to form a highly stable self-repairing catalyst layer on a nickel anode under cycled potential. The Co-ns is functionalized by organic modification as a self-repairing catalyst with high catalytic activity, high dispersibility in an alkaline electrolyte, and protection of the nickel anode from corrosion. The Co-ns supplied from the alkaline electrolyte forms a catalyst layer via the anodic reaction on the surface of the nickel anode. This catalyst layer is detached under cycled potential simulating the fluctuating electricity of renewable energy; however, it is repaired by the constant current electrolysis simulating the steady state operation of AWE. The reaction between the Co-ns and nickel anode strengthens the connection between the catalyst layer and substrate. Furthermore, the Co-ns is less influential to the activity of a commercial cathode, indicating applicability to the conventional AWE system without changing the manifold structure. Consequently, the specially designed Co-ns catalyst shows great potential as a novel self-repairing function in an AWE system, which will enable stable operation under fluctuating electricity from renewable energy. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据