4.6 Article

Nanocomposites of digestively ripened copper oxide quantum dots and graphene oxide as a binder free battery-like supercapacitor electrode material

期刊

ELECTROCHIMICA ACTA
卷 321, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.134709

关键词

Battery-like supercapacitor; Digestive ripening; Copper oxide; Quantum dot; Graphene oxide

资金

  1. DST India [YSS/2015/001712, DST 11-IFA-PH-07]
  2. DST FILE [DST/TMD/SERI/HUB/1(C)]
  3. MHRD

向作者/读者索取更多资源

Ultra-small (r < 2 nm), semiconductor quantum dots (QDs) based composites are underexplored in electrochemical energy-storage devices. This is due to practical challenges associated with synthesis of QDs such as (i) stabilization, (ii) scalability, and (iii) achieving monodispersed population. In this context, ultra-small, highly monodispersed copper oxide QDs (similar to 2.5 +/- 0.4 nm) have been synthesized by using soft-chemical and scalable approach based on digestive ripening. Composites of digestively ripened (DRd) copper oxide QDs deposited on graphene oxide are tested electrochemically for battery-like supercapacitor. The composites are grown in-situ on a Ni-foam to make binder-free battery-like supercapacitor electrode by hydrothermal process. Results indicates that battery-like behavior of the composites. Among the composites, 50%QDs-GO provides maximum specific capacity of 191 mA h g(-1) at 2 mV s(-1) which is maintained up to 63 mA h g(-1) even at a high scan rate of 200 mV s(-1). The specific capacity increases similar to 4 times for the 50%QDs-GO composite, compared to the graphene oxide. The maximum energy density provided by the system is 57.2 Wh kg(-1) at 2 mV s(-1). Specific capacity and charge-discharge stability of the composites are found to be improved with increasing concentration of QDs. This is the first report on deployment of DRd copper oxide QDs in battery-like supercapacitors and it opens up possibilities for further exploration of other DRd QDs. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据