4.6 Article

Effect of Mg2+/F- co-doping on electrochemical performance of LiNi0.5Mn1.5O4 for 5 V lithium-ion batteries

期刊

ELECTROCHIMICA ACTA
卷 323, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.134692

关键词

Lithium-ion battery; LiNi0.5Mn1.5O4; Mg2+/F- co-doping; Solid-state process

资金

  1. Hebei Province Applied Basic Research Programe-Key Basic Research Project [17964407D]
  2. Science and Technology Program of Hebei Province [18214404D]
  3. Hebei Academy of Science [191409, 191410]

向作者/读者索取更多资源

Mg2+/F- co-doped LiNi0.5Mn1.5O4 cathode material was synthesized by a facile one-step solid-state process. The effect of Mg2+/F- co-doping on grain morphology, phase structure, and electrochemical properties was studied by a series of characterizations. Scanning-electron-microscopy images show that Mg2+/F- co-doped LiNi0.5Mn1.5O4 (denoted LNMO-MF) particles grow larger than pure LiNia(0.5)Mn(1.5)O(4) particles. X-ray diffraction, Raman spectra, Fourier transformation infrared spectroscopy, X-ray photoelectron spectroscopy, and cyclic-voltammetry tests indicate that all samples mainly display a Fd-3m space group and more Mn3+ ions in the LNMO-MF sample after Mg2+/F- co-doping, which is conducive to increasing the cationic disorder degree and enhancing the electronic conductivity of electrode material. Results show that the LNMO-MF cathode material delivers an excellent rate performance with discharge capacities of 142, 144, 140 136, 132, 124, 115, and 100 mAh g(-1) at 0.2, 0.5, 1, 2, 3, 5, 7, and 10C (1C = 140 mAh g(-1)), respectively. Remarkably, LNMO-MF also shows cycling stability with a capacity retention of 86.2% at 5C after 400 cycles, which is much higher than that of pure LiNi0.5Mn1.5O4 (67.7%). The improvement of LNMO-MF's electrochemical properties could be ascribed to the Mg2+/F- co-doping, delivering a more stable structure, better crystallinity, the highest Li+ diffusion coefficient, and the lowest charge-transfer resistance. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据