4.6 Article

Structurally disordered Ta2O5 aerogel for high-rate and highly stable Li-ion and Na-ion storage through surface redox pseudocapacitance

期刊

ELECTROCHIMICA ACTA
卷 321, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.134645

关键词

Tantalum oxide; Disordered structure; Aerogel; Lithium-ion storage; Sodium-ion storage; Surface redox pseudocapacitance

资金

  1. ETH Zurich
  2. Office of China Postdoctoral Council [32]
  3. China Scholarship Council

向作者/读者索取更多资源

Electrode materials that combine the high energy density of batteries and the high power density of supercapacitors become an increasing need for current and near-future applications. Ta2O5 delivers a high theoretical capacity but suffers from unsatisfactory rate capabilities. Here we prepare a structurally disordered Ta2O5 nanoparticle aerogel via a nonaqueous sol-gel process followed by CO2 super-critical drying. The resulting aerogels exhibit large surface area, high porosity, fast ion diffusion, and extrinsically pseudocapacitive Li+/Na+ storage behavior (through surface redox reactions). With these merits, when evaluated as anode material for both lithium-ion and sodium-ion half cells (LIBs and NIBs), the Ta2O5 aerogels show excellent rate capabilities (97.0 and 43.7 mA h g(-1) at 5000 mA g(-1) for LIBs and NIBs, respectively) and highly stable cycling performance (20000 cycles at 5000 mA g(-1) and 10000 cycles at 1000 mA g(-1) without obvious capacity fading for LIBs and NIBs, respectively). This work introduces Ta2O5, a typical conversion-type metal oxide without intrinsic pseudocapacitance, as a promising anode material with high extrinsic pseudocapacitance for both LIBs and NIBs, which may open the door to achieve high-rate alkali-ion storage with low synthesis cost for durable microbatteries. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据