4.7 Article

Simultaneous determination of forty-two parent and halogenated polycyclic aromatic hydrocarbons using solid-phase extraction combined with gas chromatography-mass spectrometry in drinking water

期刊

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
卷 181, 期 -, 页码 241-247

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2019.06.011

关键词

Halogenated polycyclic aromatic hydrocarbons; Simultaneous; Solid-phase extraction; Elution solvent; Drinking water

资金

  1. National Natural Science Foundation of China [21677155]

向作者/读者索取更多资源

The coexistence of parent polycyclic aromatic hydrocarbons (PPAHs) and halogenated PAHs (HPAHs) in drinking water has generated much concern recently. However, a method to simultaneously determine these compounds has not been developed. In this study, a method using solid-phase extraction combined with gas chromatography-mass spectrometry for determination of PPAHs and HPAHs in drinking water was established. Forty-two target compounds including 16 PPAHs and 26 HPAHs (16 chlorinated PAHs (CI-HPAHs) and 10 brominated PAHs (Br-PAHs)) were selected to evaluate the performance. Our results indicate enriching compounds with a LC18 cartridge and eluting with dichloromethane is optimal with recovery of 74.88-119.4%. Method detection limits ranged from 0.34 to 3.37 ng L-1 when only using 1 L samples. The method accomplished the analysis of trace PPAHs and HPAHs. We found the coexistence of PPAHs and HPAHs including 12 PPAHs, 2 CI-PAHs and 3 Br-PAHs in tap water samples. Maximum total concentration of PPAHs and HPAHs reached 33.69 ng L-1 and 3.04 ng L-1, respectively. Trace Br-PAHs were first detected in drinking water. 6-bromobenzene[a]pyrene was dominated among the HPAHs with a concentration from 2.30 to 2.69 ng L-1. The simultaneous occurrence of PPAHs and HPAHs in drinking water should receive more attention, and their formation mechanism should be further explored.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据