4.7 Article

Iron (III) oxide nanoparticles alleviate arsenic induced stunting in Vigna radiata

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2019.109496

关键词

Arsenic; Fe2O3 nanoparticles; Oxidative stress; Vigna radiata

资金

  1. Ministry of Agriculture, Food and Rural affairs, Korea Govt.

向作者/读者索取更多资源

Iron nanoparticles (NPs) are widely used for the removal of arsenic from water. In this study, we evaluated the interaction between arsenate (AsO43-) and Fe2O3-NPs on early seedling growth of Vigna radiata. Seedlings were raised in AsO43- and Fe2O3-NPs, alone and in combination. While Fe2O3-NPs slightly promoted seedling growth, AsO43- reduced seedling growth drastically. AsO43--induced decline in the seedling growth was recovered by Fe2O3-NPs. In contrast, equivalent concentrations of FeCl3, alone and together with AsO43-, inhibited seed germination completely. Lower arsenic content in seedlings raised in the presence of Fe2O3-NPs indicated that Fe2O3-NPs restricted arsenic uptake. Ability of Fe2O3-NPs to restrict the arsenic uptake of the seedlings was due to adsorption of AsO43-, as revealed by transmission and scanning electron microscopy. Non-toxic levels of iron in seedlings were due to restriction of Fe2O3-NPs to root-surface. AsO43- enhanced the ferric chelate reductase activity of root which was recovered by Fe2O3-NPs. The AsO43--induced oxidative stress, evident from high levels of proline, H2O2 and malondialdehyde, and lowered root oxidisability was ameliorated by Fe2O3-NPs. AsO43- induced enhancement in total antioxidant capacity, superoxide dismutase and catalase activity, and decline in guaiacol peroxidase activity were antagonized by Fe2O3-NPs. Our findings reveal that Fe2O3-NPs provide effective resistance/amelioration to arsenic toxicity by reducing arsenic availability to plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据