4.5 Article

Soil Phosphorus Bioavailability and Recycling Increased with Stand Age in Chinese Fir Plantations

期刊

ECOSYSTEMS
卷 23, 期 5, 页码 973-988

出版社

SPRINGER
DOI: 10.1007/s10021-019-00450-1

关键词

Chinese fir plantation; forest floor; phosphorus uptake; rhizosphere processes; soil phosphorus stock; nutrient mobilization; phosphorus recycling

类别

向作者/读者索取更多资源

Phosphorus (P) is a limiting nutrient for plant growth in most forest ecosystems. In response to P deficiency, plants alter root exudates (organic acids, phosphatases, and protons) to increase P bioavailability in soils. However, little is known about how bioavailable P pools (soluble-P, exchangeable-P, hydrolysable-P, and ligand-P extracted by CaCl2, citric acid, enzyme mixture, and HCl solution, respectively) change with stand age, especially for plantation forests. We selected a chronosequence of second-generation Chinese fir [Cunninghamia lanceolata(Lamb.) Hook., Taxodiaceae] plantations with increasing age including 3, 8-11, 16, 20, 25, 29, and 32 years. We measured total P and four bioavailable P pools in organic (O) and mineral horizons, and rhizosphere soil, as well as root exudates in the rhizosphere, litter biomass on the forest floor, and annual P uptake. Soluble-P, exchangeable-P, and ligand-P in the O horizon increased with stand age due to litter accumulation. Exchangeable-P and ligand-P in mineral soil decreased with stand age because of the increasing annual P uptake that depleted inorganic P. Exchangeable-P and ligand-P in the rhizosphere increased with stand age because the decrease in pH and citric acid concentration led to phosphate being more strongly bound to Fe and Al oxyhydroxides. Consequently, the trees' ability for P mobilization decreased with stand age, but the P recycling within the tree increased. Continuous mineralization of hydrolysable-P by acid phosphatase replenished inorganic P pools, especially in solution. The progressive incorporation of P in the biological cycle with increasing tree age indicates that extending rotation periods might be an appropriate measure to increase P supply.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据